【纪中】Day10+

【C】
题意:求无向图中两点之间的路径数。
水题。由于每个点只在一个简单环上,所以缩点以后图就变成一颗树了,而只要进过一个环,就有两条路。
于是用tarjin缩点再跑lca即可。缩点也可以用dfs,写完tarjin结果忘了无向图怎么处理,只好改dfs。。。
【棋盘游戏】
题意:从一个点走到(0,0),一步可往左、下、左下三个方向走任意步,询问先手的输赢情况。
明显的博弈论,正解是威佐夫博弈,公式很简单:
记w=(int)[((sqrt(5)+1)/2)*z ];
若w=x,则先手必败,否则先手必胜。
来讲讲部分分的做法。
30%:显然,若起点为(0,0)则先手必输,那么,从(0,0)右、上、右上的点便是先手必胜。接着,从(0,0)开始一层一层地找,若没有被标记过先手必胜,则就是先手必败。
60%:既然可以从上述方法得知输赢情况,那么,可以发现先手必败的情况特别少,打表发现,每一个必败点(x, y),(x - 1)(y - 2)、(x - 2)(y - 3)其中一个一定是必败点,可以找规律求解(反正我没找到)。
【偷窃】
题意:在一堆正方体中拿走最多的数量,并且使其三视图不改变。
正解是二分图匹配,对于行和列的最高点建边,再分别连向源点和汇点,流量是其最大值的数值,跑网络流求最大匹配。
但是,水水就能过去的题为什么要打网络流。要使三视图不改变,只要最高的不少,其余的全搬走只剩一个即可。那么,对于列上的最大值,去找行上有没有与其想等的,如果有,在一个位置就可满足行列的要求,如果没有,就随便找一个比它大的放。
代码如下:
继续阅读【纪中】Day10+

Day1:A+组

【元素】
题意:将n个整数分组,使组数最少且元素最多的组的元素个数尽量少。
数据范围给出提示,n<=15,符合这个范围的算法有深搜、状压DP。这里考虑深搜,枚举组数N,对于每一个数枚举其所在的组。时间复杂度为O(刚好能过)。
状压DP时间复杂度较为严谨,为O(2 ^ n * n ^ 2)。 令f[i]为状态i时最少需要的组数,对于两个状态opt、nav。若能合并,则f[opt ^ nav] = min(f[opt], f[nav])。若不能合并,则需讨论。

【反击】
题意:在n个数中找出最多满足条件的完美对数。
n <= 1000,可以暴力判断每两个数是否能符合条件,由于不能重复选取,联想到二分图。二分图求最大匹配方法有许多,这里使用网络流求二分图。将每个点拆成两点,每个点与另一边能与自己匹配的点连一条流量上限为1的边。源点s与一半的点连边,流量上限为正无穷。汇点t与另一半的点连边,流量上限为正无穷。
时间复杂度为O(nlogn).

【最小】
题意:将n点m边图中的点分为白点和黑点。 删除一些边,使剩下的边代价尽量小,且白点与最近的黑点仍按原先的最短路连接。
答案要求按最短路连接,于是先删除不在最短路上的边,再求最小生成树。最短路用spfa求解,由于有多个源点,先将所有黑点入队再求最短路。删边后只需满足白点与黑点由最短路连接,因此可能出现删边后成为森林的现象,在求最小生成树是将所有黑点先行合并。

主要代码如下

继续阅读Day1:A+组